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Abstract. The determination of the continuous symmetries of differential equations follows a
well known algorithm, and is reduced to solution of a set of linear equations; this is based on
considering infinitesimal generators of the symmetries, so that the method does not extend to
discrete symmetries. In this paper, we present a method to determine discrete symmetries in a
certain class by means of a linear system, although this is considerably more difficult to solve
than the one connected with continuous symmetries. We also consider the inverse (and simpler)
problem of determining the most general equation admitting a given discrete symmetry. In the
last part, we consider a number of examples, dealing in particular with symmetries of relevance
to physics.

1. Introduction

It is well known [1–7] that knowledge of continuous symmetries of differential equations
(DEs) can be of considerable value in finding particular or general solutions of the equations,
or in simplifying them.

In the determination ofcontinuoussymmetries ofDEs, we proceed by identifying the
DE 1 with a manifoldS1 in the appropriatejet spaceJ ; we then look for a vector fieldη0

such that its prolongationη is tangent toS1. In this way we are reduced to considerations
on thetangent spaceto S1, i.e. to alinear problem. Indeed, the conditionη : S1 → T S1
gives a system of linearPDEs, thedetermining equations[1–7].

Knowledge ofdiscrete symmetries would also be of great use in the study ofDEs;
unfortunately, in the determination of general discrete symmetries we cannot reduce to
study the infinitesimal action of vector fields, and we end up in general with a nonlinear
problem.

In this paper, we point out that for some class of discrete symmetries, which we will call
quantizedor stroboscopicfor reasons which will become clear in what follows, we can still
reduce to a linear problem, although considerably more difficult than the one to be solved
for continuous symmetries. The method we propose has a clear geometric interpretation,
and indeed we will present it geometrically, starting from the identification of1 with the
solution manifoldS1.

The main ideas of our approach have been presented in a previous short note [8]; here
we give a more detailed discussion and expand in several directions; we also consider
explicit examples and special cases of physical relevance.
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The class of discrete transformations we will study is that of transformations obtained
by finite action of vector fields; i.e. ifη0 is a vector field, we will consider transformations
of the formTλ = eλη, whereλ ∈ R is a finite parameter; we are interested in the caseη is
not a symmetry of1, but there exist valuesλ0 such thatTλ0 : S1 → S1 (andTλ0 6= I ).
An example of this would be an equation which is invariant under a lattice of discrete
translation, but not under continuous translations, see below.

It should be anticipated that the determining equation we obtain by the method proposed
here is afunctional equation, so that in general we cannot hope to find the most general
solution, i.e. the complete set of discrete symmetries to a givenDE. It should also be
remarked that the problem is unavoidably underdetermined: indeed, two different vector
fieldsη andη′ such that eλ0η = eλ0η

′
give raise to the same discrete transformation; we will

comment on this further in what follows.
It should also be mentioned that the problem of finding continuous symmetries for

discrete equations, which is in some sense dual to the present one (see below), has been
considered by several authors [9–13]; in any case our method is different from those
proposed to that end, and we will discuss the possibility (and limitations) of application
of our method to such a problem.

We will suppose that the reader is familiar with the problem and language of determining
continuous symmetries of differential equations, and in general with the symmetry theory
of differential equations [1–7].

Let us briefly describe the plan of the paper. We will first consider the geometric
problem of quantized transformations that leave a manifold inRn+1 invariant, and we will
write the determining equations for these explicitly. We will then specialize to the case
of the manifold in a jet space corresponding to aDE: in this case some extra structure is
present, and this results in some simplification of the determining equation. Even with this,
we are not able to give the complete solution to the determining equations, but we will show
that by restricting the form of the vector field to be quantized we can give explicit solutions.
We will then consider the inverse problem: that is, given a quantized symmetry, determine
the most generalDE (for assigned order and number of variables) that is invariant under that
symmetry. This problem leads to a system ofPDEs and can be completely solved in a number
of cases, as we will discuss. We will then discuss the relation of our problem with the dual
situation, recalled above, of continuous symmetries and discrete equations. At this point,
we will discuss the geometrical interpretation of our method from a rather abstract point of
view; this could be helpful in establishing relations with differential geometric properties
of the manifold considered. Indeed, in this language we have to determine connections for
a certain fibre bundle. Finally, we will consider in detail some explicit examples, focusing
in particular on simple discrete symmetries of wide use, such as translations, rotations and
scale transformations.

2. Quantized symmetries for manifolds

Let us considerX = Rn, Y = R1. Let us consider a manifold0 in M = X × Y = Rn+1

defined by the equation

y = f (x) (2.1)

with f : X → Y a smooth function.
Let us further consider a vector field inM

η = ϕi(x, y)∂i + ψ(x, y)∂y . (2.2)
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For brevity here and in what follows we write

∂i ≡ ∂

∂xi
(2.3)

and summation over repeated indices is understood.
The infinitesimal action eεη of η in M maps(x, y) to a new point(x ′, y ′), where

x ′ = x + εϕ(x, y) y ′ = y + εψ(x, y) (2.4)

so that the graph off , 0 = {(x, f (x))} is transformed into a new curve0ε = {(x, fε(x))}
which is the graph of the function

fε(x) = f (x)+ ε[ψ(x, y)− (ϕi(x, y) ∂i)f (x)] . (2.5)

Let us now introduce the functionF : R × X → R such thatF(λ, x) = fλ(x) is the
transform off (x) under eλη. Clearly, the infinitesimal transformation (2.5) yields that this
F satisfies thedetermining equation

∂F (λ, x)

∂λ
+ ϕi(x, F (λ, x))

∂F (λ, x)

∂xi
= ψ(x, F (λ, x)) (2.6)

with initial condition

F(0, x) = f (x) . (2.7)

If η is a continuous symmetry off , then0 must be invariant underη, i.e.fε(x) = f (x),
or equivalently(∂F/∂λ) = 0. Indeed in this case (2.6) gives just the usual determining
equations for the symmetries of (2.1).

As mentioned in the introduction, we are interested in the case whereη is not a symmetry
of (2.1), but there is a special valueλ0 such thatfλ0 = f , i.e. such that

F(λ0, x) = F(0, x) . (2.8)

In other words, we are interested in determiningη such that the solution to (2.6) with
the initial condition (2.7) isperiodic in λ (excluding the trivial case∂F/∂λ = 0). In this
case,3 = eλη : M → M maps0 into itself and therefore qualifies as a discrete symmetry
of (1), or equivalently of0.

It should be stressed that we also must require that3|0 is not the identity, or we would
have a trivial discrete symmetry.

Remark 1. It is now clear why we call such a symmetry, given by finite action of a
vector field which is not a continuous symmetry of (2.1) itself, a quantized or stroboscopic
symmetry, as anticipated in the introduction.

Remark 2. By multiplying η by a numerical constant, we can always setλ0 = 1, or
λ0 = 2π . Thus, in what follows we will in general considerλ0 as fixed. The (2π , or any
fixed period) periodicity requirement inλ would suggest to expandF(λ, x) as a Fourier
series inλ. This is indeed possible, but is of practical use only if (2.6) is linear (see below).
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Remark 3. We stress that in (2.6) we have to determine not onlyF , but ϕ andψ as well.
Thus, we are not dealing with a normalPDE, but with a functionalPDE. The only data are
the initial condition (2.7) and the (arbitrary)λ0 6= 0 appearing in (2.8).

Remark 4. We could—and will—consider the inverse problem of determining the
manifolds 0 which are invariant under the action of a given prescribed symmetry. In
this caseϕ,ψ are given, and (6) is a regularPDE, not a functional one. It is not surprising
that this inverse problem is much easier than the direct one (see below).

Remark 5. Although we have considered quite specialX, Y,M and0 for ease of notation,
it is simple to generalize the above discussion to the case whereX and Y are smooth
submanifolds in real spaces; for our purposes we will not need to consider the case0 is a
generic smooth submanifold inM = X× Y , and only need to consider0 as the graph of a
function f in an appropriate space.

3. Quantized symmetries of differential equations

As already recalled, aDE 1 is naturally identified with a manifoldS1 in an appropriate jet
spaceJ [1, 6, 7, 15, 17]. Therefore, if0 is S1 andM is J , the theory developed in the
previous section can be applied to differential equations as well.

However, the fact that we are dealing with jet spaces makes that an extra structure
(the contact structure) is now present. Due to this, we have some extra constraints on the
functions appearing in (2.6): e.g.,η should now be the prolongation toJ of an underlying
Lie-point vector fieldη0 acting in the spaceM0 of independent and dependent variables;
due to this theϕi andψ are not arbitrary smooth functions, but must satisfy some relations
(embodied in the prolongation formula [1–7]), as we are now going to discuss.

3.1. Ordinary differential equations

Let us first consider the case of an autonomousODE

ut = f (u) . (3.1)

and time-independent Lie-point vector field

η0 = ϕ(u)∂u . (3.2)

Now M0 = R2 = {(t, u)}, and (3.1) is identified with a manifold inJ = M = R3 =
{t, u, ut }. The prolongation ofη0 : M0 → TM0 to M is given by

η = ϕ(u)∂u +8(u, ut )∂ut (3.3′)

where8 = ϕuut by the prolongation formula [1–7], so that on0 we have

8 = ϕuf (u) . (3.3′′)

Now ut plays the role ofy in section 2, and8 corresponds toψ ; thus we get
equation (2.6) in the form

∂F (λ, u)

∂λ
+ ϕ(u)

(
∂F (λ, u)

∂u

)
= ψ = ϕuF (λ, u) (3.4)



Discrete symmetries of differential equations 863

(we have takent-independence into account). Thus,ψ is now determined byϕ, and we
have only one arbitrary function inη. Note also that while theϕ in the case of section 2
could depend ony, now the request thatη0 be a Lie-point vector field ensures thatϕ does
not depend onut , and we end up with a determining equation which is linear inF .

Thus, dealing with differential equations rather than algebraic manifolds does indeed
give a somewhat simpler problem!

It also is worth considering the case of non-autonomousODEs and time-dependent vector
fields, i.e.

ut = f (t, u) (3.5)

η0 = τ(t, u)∂t + ϕ(t, u)∂u . (3.6)

In this caseη is still given by (3.3′), but the prolongation formula yields8 = ϕt + ϕuut −
τtut − τu(ut )

2, and on0 we have

8 = ϕt + [ϕu − τt ]f (t, u)− τu[f (t, u)]2 (3.6′)

so that we end up with the determining equation

∂F

∂λ
+ τ(t, u)

∂F

∂t
+ ϕ(t, u)

∂F

∂u
= ψ = ϕt + [ϕu − τt ]F − τuF

2 . (3.7)

The appearance on the right-hand side of a nonlinear term is peculiar to the case of
first-orderODEs: indeed, by the recursive structure of the general prolongation formula [1–
7] one can easily see that for generalODEs of ordern the determining equations will have
on the left-hand side a differential operator whose coefficients do not depend onF (while
in the case of algebraic manifolds, see section 2, they could depend onF ), applied onF ,
and on the right-hand side an expression which contains terms of order not higher than one
in F if n 6= 1, and not higher than two inF if n = 1.

Remark 6. The fact that first-order differential equations lead to more difficult determining
equations than higher-order ones should not be a surprise. Indeed, the same happens also
in the case of determining equations for continuous Lie-point symmetries [1–7].

The general procedure for writing the determining equations for discrete symmetries of
higher-orderODEs or evolutionPDEs should be clear by now; it amounts to repeating the
procedure illustrated in section 2 for manifolds and taking into account thatη : M → TM

is now the prolongation ofη0 : M0 → TM0. We stress that this only requires to apply the
general prolongation formula [1–7].

We will give the formulae for the case of second-orderODEs and of evolutionPDEs of
order one or two in the spatial derivatives explicitly.

In the case of general (non-autonomous) second-orderODE

utt = f (t, u, ut ) (3.8)

and generalη0, theη0 is as in (3.6), and the second prolongation of this yields

η = τ(t, u)∂t + ϕ(t, u)∂u + [ϕt + (ϕu − τt )ut − τu(ut )
2]∂ut

+ [ϕtt + (ϕu − 2τt − 3τuut )utt + (2ϕut − τtt )ut

+ (ϕuu − 2τut )(ut )
2 − τuu(ut )

3]∂utt (3.9)
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so that the determining equation is
∂F

∂λ
+ τ

∂F

∂t
+ ϕ

∂F

∂u
+ [ϕt + (ϕu − τt )ut − τu(ut )

2]
∂F

∂ut
= ϕtt

+ (ϕu − 2τt − 3τuut )utt + (2ϕut − τtt )ut

+ (ϕuu − 2τut )(ut )
2 − τuu(ut )

3 . (3.10)

For the special case of an autonomous second-orderODE

utt = f (u, ut ) (3.11)

and time independentη0 [as in (3.2)], we get

η = ϕ∂u + ϕuut∂ut + [ϕuu(ut )
2 + ϕuutt ]∂utt (3.12)

and the determining equation is therefore

∂F

∂λ
+ ϕ

∂F

∂u
+ ∂ϕ

∂u

∂F

∂ut
(ut ) = ∂2ϕ

∂u2
(ut )

2 + ∂ϕ

∂u
F (3.13)

whereϕ = ϕ(u) andF = F(λ, u, ut ).

3.2. Partial differential equations

For a first-orderPDE

ut = f (t, x, u, ux) (3.14)

with x ∈ Rq , we write

η0 = τ(t, x, u)∂t + ξ j (t, x, u)∂j + ϕ(t, x, u)∂u (3.15)

wherej runs from 1 toq, summation over repeated indices is understood, and∂j = ∂/∂xj .
The first prolongation of this yields

η = τ(t, x, u)∂t + ξ j (t, x, u)∂j + ϕ(t, x, u)∂u

+ [ϕt + ϕuut − τtut − τu(ut )
2 − ξ

j
t uj − ξ ju ujut ]∂ut

+ [ϕj + ϕuuj − τjut − τuutuj − ξ ij ui − ξ iuuiuj ]∂uj (3.16)

and therefore the determining equation is (note thatF now also appears in the coefficients of
F derivatives on the left-hand side of the determining equation, in contrast to what happens
in the case ofODEs):
∂F

∂λ
+ τ

∂F

∂t
+ ξ j

∂F

∂xj
+ ϕ

∂F

∂u
+ [
ϕj + ϕuuj − (τj + τuuj )F − ξ ij ui − ξ iuuiuj

] (
∂F

∂uj

)
=

[
ϕt − ξ

j
t uj + (ϕu − τt − ξ ju uj )F − τuF

2
]
. (3.17)

For autonomous first-orderPDEs

ut = f (u, ux) (3.18)

and forη0 independent ofx and t ,

η0 = ϕ(u)∂u (3.19)

we get

η = ϕ(u)∂u + (ϕuux)∂ux + (ϕuut )∂ut (3.19′)
and the determining equation is

∂F

∂λ
+ ϕ

∂F

∂u
+ (ϕuux)

∂F

∂ux
= ϕuF . (3.20)

We stress that in this case the coefficient ofF derivatives on the left-hand side of the
determining equation do not depend onF , and the determining equation islinear.
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Remark 7. By looking at the prolongation formula, we see at once that this is a general
fact; i.e. for autonomousPDEs andη0 = ϕ(t, x, u)∂u, the determining equations are always
linear.

Remark 8. If we have an autonomous evolution equation, the general form ofη0

transforming it into autonomous evolution equations is justη0 = τ(t)∂t + ξ j (x)∂j +
ϕ(t, x, u)∂u [6]. Note that for autonomous equations, the time and space translations
correspond to continuous symmetries, and so are not of interest in the present context.

In the case of second-order evolutionPDEs, for ease of notation we will keep to
autonomous equations

ut = f (u, ux, uxx) (3.21)

andη0 as in (3.19). In this case we get

η = ϕ∂u + ϕuux∂ux + (ϕuu(ux)
2 + ϕuuxx)∂uxx + ϕuut∂ut (3.22)

and the determining equation is therefore

∂F

∂λ
+ ϕ

∂F

∂u
+ (ϕuux)

∂F

∂ux
+ [
ϕuu(ux)

2 + ϕuuxx
] ∂F

∂uxx
= ϕuF . (3.23)

3.3. Quantized symmetries with linear generators

A special case of interest is the one where the functions appearing in the vector fieldη0 are
linear. We are going to discuss this case now, limiting ourselves to evolutionary symmetries
[1–7], i.e. to the case

η0 = ϕα(u)
∂

∂uα
(3.24)

where linearity means

ϕα(u) = Aαβuβ . (3.25)

From the previous computations we get that for first-orderODEs (autonomous or not)

duα
dt

= fα(u, t) (3.26)

the determining equations in the present case are

∂Fα

∂λ
= Fβ

∂ϕα

∂uβ
− ϕβ

∂Fα

∂uβ
. (3.27)

For second-orderODEs

d2uα

dt2
= fα(u, ut ; t) (3.28)
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the determining equations have a similar form (hereuj ≡ uj , u
j
t = duj/dt):

∂Fα

∂λ
+ Aγβu

β
t

∂Fα

∂u
γ
t

= Fβ
∂ϕα

∂uβ
− ϕβ

∂Fα

∂uβ
. (3.29)

Let us now consider first-orderPDEs:

∂uα

∂t
= fα(u, ux; x, t) (3.30)

and denoteujx ≡ ∂uj/∂x. These yield the determining equations

∂Fα

∂λ
+ Aγβ

∂uβ

∂x

∂Fα

∂u
γ
x

= Fβ
∂ϕα

∂uβ
− ϕβ

∂Fα

∂uβ
. (3.31)

Finally, for (autonomous) second-order evolutionPDEs

∂uα

∂t
= fα(u, ux, uxx) (3.32)

the determining equations are

∂Fα

∂λ
+ Aγβu

β
x

∂Fα

∂u
γ
x

+ Aγβu
β
xx

∂Fα

∂u
γ
xx

= Fβ
∂ϕα

∂uβ
− ϕβ

∂Fα

∂uβ
. (3.33)

4. Differential equations with prescribed quantized symmetry

Determining the discrete (quantized) symmetries of a given differential equation along the
lines of section 3, i.e. solving the determining equations obtained there, is a very difficult
problem, as it amounts to solving afunctional equation: indeed, we have to determineboth
the symmetry vector fieldη0 (i.e. the functionsϕ, ξ , τ ), and the functionF(λ, u) satisfying
F(0, u) = f (u).

The situation is substantially simpler if we prescribe a quantized symmetrya priori ,
and we try to determine the differential equations which admit this quantized symmetry.

Indeed, nowϕ is given, so that the determining equations become standardPDEs for
F(λ, u), and onceF(λ, u) has been determined, we just have to putλ = 0 (or actually
λ = λ0 for any constantλ0) to have the most generalf (u) identifying a differential equation
admitting the required quantized symmetry.

Also, looking at the determining equations written in section 3 for different classes of
problems, we note that for autonomous equations, the determining equations are a system
of quasilinearPDEs for F(λ, u).

It should also be mentioned that the class of vector fields we have been considering so
far is too ample from the physical point of view. Indeed, if we allow general vector fields
of the form

η = ϕ(u, x, t)∂u + ξ(u, x, t)∂x + τ(u, x, t)∂t (4.1)

these will in general transform evolution equations into equations which are not of
evolutionary type. In order to preserve the evolutionary character of the equations under
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the action of the Lie group, we should require [6] that this be ‘fibre preserving’, i.e. that the
fibred structure of the spaceM = X × U be preserved. This is obtained by requiring [6]
that η be of the form

η = ϕ(u, x, t)∂u + ξ(x, t)∂x + τ(x, t)∂t . (4.2)

Note that if we also require that the reparametrization of time should not depend on
the space point (another physically reasonable assumption, out of relativistic theories), we
should have a more restrictive class of vector fields, namely

η = ϕ(u, x, t)∂u + ξ(x, t)∂x + τ(t)∂t . (4.3)

However, wheneverτu = 0 (as it is the case for (4.2) or (4.3) above), the determining
equations becomelinear in F , even when considering non-autonomous evolution problems.

We will now restrict consideration to the class of vector fields (4.3). The following table,
associating with any of the class of equations considered there the determining equations as
equations forF , can then be derived immediately; examples of solutions to these for vector
fields η0 of physical relevance will be given in section 9.

Evolution equation Determining equation

ut = f (u) Fλ + ϕFu = [ϕu]F

ut = f (u; t) Fλ + τFt + ϕFu = ϕt + [(ϕu − τt )]F

utt = f (u, ut ) Fλ + ϕFu + (ϕuut )Fut = [ϕu]F + ϕuuu
2
t

utt = f (u, ut ; t) Fλ + τFt + ϕFu + (ϕt + (ϕu − τt )ut )Fut

= ϕtt + (ϕu − 2τt − 3τuut )utt + (2ϕut − τtt )ut

+ (ϕuu − 2τut )(ut )
2 − τuu(ut )

3

ut = f (u, ux) Fλ + ϕFu + (ϕuux)Fux = ϕu F

ut = f (u, ux; t, x) Fλ + ξFx + ϕFu + (ϕx + ϕuux − ξxux)Fux

= [ϕu − τt − ξxux ] F + ϕt − ξtux

ut = f (u, ux, uxx) Fλ + ϕFu + (ϕuux)Fux + (ϕuuu
2
x + ϕuuxx)Fuxx = ϕu F

5. Fourier expansion and the determining equation

Let us come back to the determining equation (2.6); as remarked in section 2, the periodicity
condition (2.8) suggests to use a Fourier expansion. Here we will indeed look for solutions
of this equation in such a form (we will chooseλ0 = 2π for ease of notation), i.e.

F(λ, x) =
∞∑

k=−∞
ck(x)e

ikλ (5.1)

(note that if we are dealing with realF we should requirec−k = c∗k ). Substituting this in
the determining equation we get

∞∑
k=−∞

(
ikck(x)+ ϕj (x, F (λ, x))

∂ck(x)

∂xj

)
eikλ = ψ(x, F (λ, x)) . (5.2)
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Setting the determining equation in this form is particularly useful ifϕ does not depend
on F , andψ contains only linear terms inF (and maybe terms independent ofF as well).
Indeed, in this case we get a series of decoupled equations for the Fourier coefficientsck(x).

In the case of general manifolds inRn we have no reason to suppose this simplifying
conditions are satisfied, but in the case of differential equations, as discussed in the previous
section 3, we are guaranteed to be in such a situation (this is indeed why we deferred the
discussion of Fourier approach up to now). We will therefore assumeϕj = ϕj (x), and
write ψ as

ψ(x, F (λ, x)) = ψ0(x)+ ψ1(x)F (λ, x) . (5.3)

Equating the coefficients of the functions eiλk in both sides of the determining equations,
we get thePDEs system

ϕj (x)
∂ck(x)

∂xj
+ ikck(x) = ψ0(x)δk0 + ψ1(x)ck(x) (5.4)

which can equivalently be expressed as the eigenvalue problem(
ϕj (x)

∂

∂xj
− ψ1(x)

)
ck(x) = −ikck(x) (5.5)

for any k 6= 0. Whenk = 0 we get the inhomogeneous equation

ϕj (x)
∂c0(x)

∂xj
− ψ1(x)c0(x) = ψ0(x) . (5.6)

The periodicity condition (2.8) is now automatically satisfied; as for the initial condition
(2.7), this now reads

F(0, x) =
∞∑

k=−∞
ck(x) = f (x) . (5.7)

The equations for the coefficientsck(x) are now, as already mentioned, linear and
uncoupled.

Remark 9. Since we deal with a linear equation, its solutions will be given by an arbitrary
superposition of a particular solution of the equation and any solution of the associated
homogeneous equation (obtained by settingψ0 = 0). This shows that in this case we have
a great degree of arbitrarity in solving the determining equation; this is indeed reflected in
the fact that we can choose any combination of theck to give theF .

Remark 10. We should requirec1(x) 6= 0, or the periodicity ofF would not be the required
one (we recallλ0 6= 0 could be chosen arbitrarily by a rescaling). This suggests that, in order
to reduce the arbitrariness in the choice ofF somewhat, we could fixck = 0 for |k| > 1. This
prescription leads to particularly simple computations, but not to the most general solution.
Such a prescription amounts to writingF(λ, x) = F0(x)+ F1(x) cos(λ)+ F2(x) sin(λ) and
in this form can also be implemented directly on (2.6); the initial condition (2.7) is now
simply F1(x)+ F2(x) = f (x).
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Remark 11. If we have∂F/∂λ = 0 (so thatη0 is a continuous symmetry), we get precisely
the equations (5.4) without the ikck term. In this case, fork 6= 0 we get (5.5) with zero
right-hand side, while fork = 0 we still get (5.6). Thec0 solution of (5.6) would actually
give equations with continuous invariance, which are not of interest here. We can therefore
concentrate on thek 6= 0 equations alone. With the above prescription, this means that we
can focus on thek = 1 equation alone.

Let us now consider the ‘inverse problem’ mentioned above, i.e. let us consider the
symmetry as given (that is, we know the functionsϕj (x) andψ). Each equation (5.5) is a
linear first-orderPDE and can be solved using the characteristics

dx1

ϕ1
= dx2

ϕ2
= · · · = dxn

ϕn
= dck
(ψ1 − ik)ck

. (5.8)

Solving the first set of equations,

dx1

ϕ1
= dx2

ϕ2
= · · · = dxn

ϕn
(5.9)

we get a set of invariants, which are the invariants for the continuous symmetryη:

gi(x) = 0 i = 1, . . . , n . (5.10)

We are then left with one further equation (herem is any integer between 1 andn, which
we can choose as we please, providedϕm 6= 0),

dxm

ϕm
= dck
(ψ1 − ik)ck

(5.11)

which yields

ck(x) = Ak(g1(x), . . . , gn(x)) exp

[∫ [
(ψ1(x)− ik)/ϕm(x)

]
dxm

]
(5.12)

where theAk are arbitrary functions of the invariants (5.10).
The solution to the problem of determiningDEs with prescribed quantized symmetries

is therefore provided in this case by (5.1) with theck(x) given by (5.12),m is such that
ϕm 6= 0 and theAk in (5.12) are such that (5.7) is satisfied.

6. Discrete symmetries of dynamical systems

We would like to consider in detail the discrete symmetries of dynamical systems, i.e. of
systemsof first-order autonomous equations,

dui

dt
= f i(u1, . . . , un) i = 1, . . . , n . (6.1)

We will considerη0 of the form η0 = ϕi(u, t)∂i (where as usual∂i = ∂/∂ui), and
proceeding as usual we get the determining equations

∂F i

∂λ
+ ϕj

∂F i

∂uj
= ∂ϕi

∂t
+ ∂ϕi

∂uj
F j . (6.2)
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Clearly, forf = (
f 1, . . . , f n

)
assigned, ifϕ0 corresponds to a discrete symmetry and

ϕ∗ to a continuous one, thenϕ = ϕ0 + ϕ∗ corresponds to a new discrete symmetry.
Therefore, in the search for discrete symmetries of a given equation1 (equations

invariant under a given discrete symmetryη0), we should proceed modulo continuous
symmetries of1 (equations admittingη0 as a continuous symmetry).

Let us now consider the case of time-independent symmetries, i.e.ϕi = ϕi(u); in this
case the determining equations

∂F i

∂λ
+ ϕj

∂F i

∂uj
= ∂ϕi

∂uj
F j (6.3)

are not only linear (in bothF andϕ), but also homogeneous as equations forF .
Therefore, if we consider (6.3) as an equation forF—i.e. if we look for equations

invariant under a given symmetry corresponding toϕ—the space of their solutions is a
moduleover the algebra of functions which admitsϕ as a continuous symmetry. In other
words, ifF1, . . . , Fs are solutions of (6.3), withFα = (F 1

α , . . . , F
n
α ), andζ1, . . . , ζs are any

functions invariant underη, thenF∗ = ∑s
j=1 ζjFj is also a solution to (6.3).

As a concrete example of discrete symmetries for dynamical system, consider the case

ẋ = f1(x, y, z) = −x + x2 + x2 cos(2z)− xy sin(2z)− y2 cos(z)

ẏ = f2(x, y, z) = −y + xy + xy cos(2z)− y2 sin(2z)+ xy cos(z) (6.4)

ż = f3(x, y, z) = cos(z)+ x cos(2z)

and let us look for time-independent symmetries, which we write in the form

η0 = ϕ1(x, y, z)∂x + ϕ2(x, y, z)∂y + ϕ3(x, y, z)∂z . (6.5)

The determining equations in this case are

∂F1

∂λ
+ ϕ1

∂F1

∂x
+ ϕ2

∂F1

∂y
+ ϕ3

∂F1

∂z
= F1∂xϕ1 + F2∂yϕ1 + F3∂zϕ1

∂F2

∂λ
+ ϕ1

∂F2

∂x
+ ϕ2

∂F2

∂y
+ ϕ3

∂F2

∂z
= F1∂xϕ2 + F2∂yϕ2 + F3∂zϕ2

∂F3

∂λ
+ ϕ1

∂F3

∂x
+ ϕ2

∂F3

∂y
+ ϕ3

∂F3

∂z
= F1∂xϕ3 + F2∂yϕ3 + F3∂zϕ3 .

(6.6)

A discrete symmetry is therefore given by

η0 = a(y∂x − x∂y)+ b∂z (6.7)

with, e.g.,a = b = 1, as shown below. Indeed, inserting this into (6.6) we get

∂F1

∂λ
+ ay

∂F1

∂x
− ax

∂F1

∂y
+ b

∂F1

∂z
= aF2

∂F2

∂λ
+ ay

∂F2

∂x
− ax

∂F2

∂y
+ b

∂F2

∂z
= −aF1

∂F3

∂λ
+ ay

∂F3

∂x
− ax

∂F3

∂y
+ b

∂F3

∂z
= 0 .

(6.8)
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If Fj are of the form

F1 = ζ1x − ζ2y

F2 = ζ1y + ζ2x

F3 = ζ3

(6.9)

with ζj = ζj (ξ) arbitrary smooth functions of

ξ1 = x2 + y2 ξ2 = arctan(y/x)− aλ ξ3 = z − bλ (6.10)

we get a solution to (6.8); if moreover theζj are periodic of periodτ2 in ξ2 and of period
τ3 in ξ3, then the solutionsF are invariant under eλ0η0 with λ0 the smallest number such
that λ0 = n2τ2/a = n3τ3/b with n2, n3 integers. It suffices to choose

ζ1 = −1 +
√
ξ1 cos(ξ2)+

√
ξ1 cos(ξ2 + 2ξ3)

ζ2 =
√
ξ1 sin(ξ2) cos(ξ3)

ζ3 = cos(ξ3)+
√
ξ1 cos(ξ2) cos(2ξ3)

(6.11)

in order to recover our system (6.4). Indeed, the action of3 = eλ0η0 on R3 is given by

3 :

 x

y

z

 −→
 x cos(aλ0)− y sin(aλ0)

y cos(aλ0)+ x sin(aλ0)

z + bλ0

 (6.12)

and the invariance of (6.4) under (6.12) can now be checked immediately, forλ0a = λ0b =
2π (e.g. a = b = 1, λ0 = 2π ). It is also trivial to check that3 does not reduce to the
identity, and that it is not a symmetry of (6.4) for arbitraryλ0, i.e. η0 is not a continuous
symmetry.

7. Relations with the problem of continuous symmetries of discrete equations

The problem we are discussing in this work should not be confused with another interesting
problem in symmetry theory, the continuous symmetries of discrete equations. Indeed, in
this case the Lie method to constructing continuous symmetries, based on the tangent space
approach—i.e. on considering the infinitesimal generators of continuous transformations,
which generate a Lie algebra—can be adapted for the case of discrete equations [9–13], and
the Lie algebra of continuous symmetries of discrete equations can be found.

This problem is dual to the problem we consider in the present paper, in the sense
that while we consider a continuous (i.e. differential) equation and discrete symmetries, in
[9–13] the evolution equation is a discrete map, and one looks for continuous symmetries.
Thus the roles of evolution equation and of symmetry transformation are interchanged.

This suggests that the method described in the present work could also be of interest in
the case of difference or difference–differential equations, in the same way Lie method has
proved to be useful for these equations.
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Although we do not intend to develop this point here, we would like to stress that
not only can our method be used—modulo this exchange of roles between the evolution
equation and the symmetry transformation—to tackle the problem of continuous symmetries
of discrete equations, but that this reformulation makes the latter problem equivalent to our
‘inverse’ problem. This means, in particular, that we have to solve normalPDEs, and not a
functional equation.

Needless to say, this holds only when the discrete map can be written as the time-one
map associated with a continuous evolution. Note that this restriction isnot present in
[9–13], so our method is definitely less generally applicable than those already available.
On the other hand, as it will also become clear by the examples presented below, when
applicable the method presented here requires relatively simple computations and could
therefore be convenient in concrete applications of the appropriate class.

In particular, all the examples presented in the final section could be reinterpreted in
this frame. To be concrete, in the case we consider a quantized symmetry with generator

η0 = ϕ(u, x)∂u (7.1)

and determine the, say, first-orderODEs

du

dt
= f (u) (7.2)

which admit this as quantized symmetry with, say, period one, we can reinterpret this as
saying that we have a discrete evolution equation written as

xn+1 = 8(x) (7.3)

and that we are looking for continuous symmetries of this of the form

ν = ψ(x)∂x . (7.4)

This is done by assuming that the discrete map is

8 = eλ0η0 (7.5)

for a convenientλ0 (e.g. λ0 = 1); now theν will be given by (7.4) with

ψ(x) = f (x) (7.6)

where thef are those determined above, i.e. the same as in (7.2).
Similar consideration would apply for more complicate situations. For example, if

we discretize a continuous equation and construct a difference–differential equation8

(for instance in a lattice), and consider its continuous symmetriesη0, this setting can
be reinterpreted saying that we have a continuous evolution—corresponding toη0—with
discrete and continuous symmetries corresponding to8.

A detailed analysis of the possible applications of our method to the problem of
symmetries of discrete and/or difference–differential equations would certainly be of interest,
but lies outside the scope of the present paper. We hope to be able to report on this in the
near future.
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8. Geometrical interpretation

Let us first go back to considering quantized symmetries for manifolds, see section 2.
When introducing the functionF(λ, x) we are implicitly passing to the consideration

of a vector fieldη′
0 associated withη0 and acting inM ′ = R ×M, given explicitly by

η′
0 = η0 + ∂λ ≡ ϕi∂i + ψ∂y + ∂λ . (8.1)

Then the graph2 = {(x, y, λ) : y = F(λ, x)} ⊂ M ′ of F(λ, x) is by construction an
invariant submanifold ofM ′ underη′

0. We are therefore brought back to the problem of
determining tangent vector field to a manifold; however, the manifold is now not givena
priori , but depends itself on the vector field.

We would like to stress thatM ′ can be naturally seen as the total space of a
fibre bundle [16, 17]B with baseR (corresponding to theλ), fibre M and projection
π : (λ, x, y) → λ; η′

0 is then a connection onB. When we are looking for solutions to
(2.6), (2.7) which moreover satisfy the periodicity condition (2.8)—i.e. we are looking for
quantized symmetries—we can consider the analogous bundleB with S1 as the base space,
M as the fibre and the same projectionπ .

Our problem can then be described in differential geometric language as the search for
a connection [16, 17]∇ on B such that there is a section2 invariant under this connection
and such that the restriction of2 to π−1(0) is the prescribed0.

Remark 12. In the above language, the determination of manifolds invariant under a given
quantized symmetry (the ‘inverse’ problem) amounts to the determination of sections ofB
invariant under a given connection∇. Again, it is obvious that this is much easier than the
‘direct’ problem, although in general it is not trivial at all.

Remark 13. It should be stressed that although2 is an invariant manifold under the
connection∇, this does not imply that transporting a point(x, f (x)) around the base space
S1 by ∇ we get the same point. In general, we get a point(x ′, f (x ′)) with x ′ 6= x, and the
discrete transformation3 : 0 → 0 is related to the holonomy [16,17] of the connection∇.

In the case of differential equations of ordern, the setting is quite similar, provided we
consider different geometrical objects.

Indeed, now we should consider thenth prolongation ofη′
0, which we denote byη′,

acting inM ′(n). But from (8.1) and the prolongation formula we can equally well consider,
instead thanη′, the vector field

9 = ∂λ + η (8.2)

(with η the nth prolongation ofη0) and correspondingly, instead thanM ′(n), consider

P = R ×M(n) (8.3)

(where theR factor corresponds toλ). Indeed, not only does

9 : P → T P (8.4)

but it is also clear that the non-trivial part of the action ofη′ onM ′(n) is fully embodied in
the action of9 on P .
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We can now consider a fibre bundleD with total spaceP , base spaceR and natural
projectionπ : P → R; the fibres of this areπ−1(0) = M(n).

If we are looking for quantized symmetries, we should consider the analogous bundle
D with S1 as base space,M(n) as fibre and the same projectionπ .

When looking for quantized symmetries of the differential equation1, we have then to
look for a connection∇ on D such that there is a section4 invariant under this connection
and such that4(0) = D.

However, this connection or more precisely its vertical part—differently from what
happens when we deal with ordinary manifolds—must preserve the contact structure in
M(n), as it is indeed ensured by the fact that in (8.2) we haveη, i.e. the prolongation of a
Lie-point vector field, and not a generic vector field inM(n).

Again, although4 is invariant under∇, and eλ0η : 1 → 1, the discrete map3 = eλ0η|1
does not need to be the identity (in which case we get a trivial symmetry), and it is indeed
related to the holonomy of the connection∇.

9. Examples

Here we discuss in detail some special cases, i.e. special kinds of equations, and examples.
They can be treated very uniformly (at least for autonomous equations). We would like to
stress some interesting points arising from the following discussion. First, it is possible to
find the general form of the equation, depending on an arbitrary periodic function. Second,
the (finite) transformation can be in some sense linearized, transforming the generic one-
parameter group into an additive one (translations).

9.1. Autonomous first-orderODE

Let us consider the simplest example, anautonomous first-orderODE, ut = f (u), and try to
find the functionf in order that it admits a discrete symmetry, with associated vector field
(for the corresponding continuous symmetry),η0 = ϕ(u)∂u. Take an arbitrary vector field
for the autonomous equation,η0 = ϕ(u)∂u and write the determining equation (3.4)

∂F

∂λ
+ ϕ(u)

∂F

∂u
= ϕuF . (9.1)

This linear equation can be solved using characteristics. Though the equation is rather
undetermined (we do not knowϕ(u) nor F(u, λ)), we can find a general form forf (u), in
terms ofϕ(u) and some arbitrary periodic function. The characteristic equations are

dλ = du

ϕ
= dF

ϕuF
(9.2)

whereϕ depends only onu andF on u andλ. This allows us to solve the first equation,
with the solution

C =
∫

du

ϕ(u)
− λ (9.3)

whereC is a constant. Using the second equation in (9.2), we get∫
ϕu(u)du

ϕ(u)
=

∫
dF

F
(9.4)
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giving the solution

F(u, λ) = h

(∫
du

ϕ(u)
− λ

)
ϕ(u) (9.5)

whereh is a periodic function. Then, the functionf in the ODE is simply

f (u) = h

(∫
du

ϕ(u)

)
ϕ(u) (9.6)

and the differential equation having a discrete symmetry (associated with a continuous one
given byη) is

ut = h

(∫
du

ϕ(u)

)
ϕ(u) . (9.7)

As a particular case, if we takeh to be constant, we have the continuous symmetry for
the differential equationut = ϕ(u)

If we specialize the vector fieldη0 and the periodic functionh(u) we can find, for
instance, invariant equations under translations, scale and special conformal transformations.
In fact, take h(u) = sinu and ϕ(u) = 1. The equation isut = sinu. For scale
transformations,ϕ(u) = u, we getut = u sin(logu). And finally, for special conformal
transformations,ϕ(u) = u2, we haveut = u2 sin(1/u).

We remark that the argument ofh is the function which is added to the parameterλ in
the finite transformation: thus, in translations we haveu → u+ λ; in scale transformations
we haveu → eλu and therefore logu → logu+λ; and in special conformal transformations
we haveu → u/(1 + λu) and therefore(1/u) → [(1/u)+ λ].

This remark gives us another point from which to view this example. Take the
autonomous equation

ut = f (u) (9.8)

and consider a transformation in theu variable, with parameterλ:

u′ = g(u, λ) . (9.9)

Now, let us find a change of variablez = H(u) linearizing the above transformation,
that is, the transformedz′ is

z′ = z + λ (9.10)

or, in terms of the old variableu

H(u′) = H(u)+ λ g(u, λ) = H−1(H(u)+ λ) . (9.11)

In terms of the new variable,z, the differential equation is

zt = H ′(H−1(z))f (H−1(z)) = f̃ (z) (9.12)
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whereH ′ is the derivative ofH with respect to its argument. If this equation is invariant
under a discrete translation (for instance withλ = 2π ), z′ = z + 2π , the functionf̃ should
be a periodic function. The originalf is given by

f (u) = f̃ (H(u))
1

H ′(u)
(9.13)

which is the form (9.6) we obtained through the determining equation, becausef̃ is a
periodic function in the variable which is used to turn the transformation into a translation
(in the variablez), and 1/H ′(u) is the corresponding vector field. This is easily computed.
The infinitesimal transformation associated with the translations (9.10) corresponds (after
the change of variable given by (9.11)) to

ϕ(u) = ∂

∂λ
H−1(H(u)+ λ)

∣∣∣∣
λ=0

= 1

H ′(u)
(9.14)

which is the result we got from the determining equation (9.6), (9.13).

9.2. Autonomous second-orderODE

This case is close to the previous one, though the equations are slightly more complicated.
Let us consider the equation

utt = f (u, ut ) (9.15)

and the vector fieldη0 = ϕ(u)∂u.
The determining equation (3.10) is

∂F

∂λ
+ ϕ

∂F

∂u
+ ϕuut

∂F

∂ut
= ϕuuu

2
t + ϕuF (9.16)

which is again a linear equation and can be solved by characteristics

dλ = du

ϕ
= dut
ϕuut

= dF

ϕuF + ϕuuu
2
t

. (9.17)

The first equation is solved in the same way we did above for (9.2), and its solution is
given by (9.3), i.e.C1 = ∫

(du/ϕ)− λ. From the second equation we get∫
ϕu(u) du

ϕ(u)
=

∫
dut
ut

(9.18)

with solution

C2 = ut

ϕ
. (9.19)

Finally, the last equation is

du

ϕ
= dF

ϕuF + ϕuuu
2
t

. (9.20)

This is a inhomogeneous linear equation and its solution is

F(u, ut , λ) = h

(∫
du

ϕ(u)
− λ,

ut

ϕ(u)

)
ϕ(u)+ u2

t

ϕ(u)
ϕu(u) (9.21)

whereh is an arbitrary function satisfying the periodicity condition onλ. If the dependency
on ut is eliminated, we get the same result as in the first example (9.5).

The functionf appearing in the equation is then

f (u, ut ) = h

(∫
du

ϕ(u)
,
ut

ϕ(u)

)
ϕ(u)+ u2

t

ϕ(u)
ϕu(u) . (9.22)
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9.3. Autonomous first-orderPDE

It turns out that the discussion of ‘autonomous first-orderPDE’ equations is just the same
as that forODE’s. Consider the equation

ut = f (u, ux) (9.23)

wherex is a vector variable,x = (xi), and write the determining equation (3.20)

∂F

∂λ
+ ϕ

∂F

∂u
+ ϕuui

∂F

∂ui
= ϕuF (9.24)

and again,ϕ is a function ofu, andui = ∂xi u. This is a linear equation and can be solved
using characteristics as in the previous examples. The characteristic equations are

dλ = du

ϕ
= dui
ϕuui

= dF

ϕuF
. (9.25)

As ϕ is a function ofu, we can solve the first equation, which is again (9.2), with solution
(9.3) C0 = ∫

(du/ϕ(u)) − λ and for i = 1, . . . , n the equations (9.18), du/ϕ = dui/ϕuui
with solutions (9.19),Ci = ui/ϕ, i = 1, . . . , n.

Using the equation (9.4) we obtain the general solution

F(u, ui, λ) = h

(∫
du

ϕ(u)
− λ,

u1

ϕ
, . . . ,

un

ϕ

)
ϕ(u) (9.26)

whereh is a function periodic inλ. The functionf (u, u1, . . . , un) is just

f (u, u1, . . . , un) = h

(∫
du

ϕ(u)
,
u1

ϕ
, . . . ,

un

ϕ

)
ϕ(u) . (9.27)

As a particular example, the functionh could be chosen as

h(λ, u, u1, . . . , un) = h0

(∫
du

ϕ(u)
− λ

)
g

(
u1

ϕ
, . . . ,

un

ϕ

)
(9.28)

with h0 a periodic function. In this way the solution is similar to that we got in theODE

case (9.5), with a new factor, given by the functiong, depending on the derivatives ofu
with respect to the variablesxi .

9.4. Autonomous second-orderPDE

Though the determining equation for

utt = f (u, ut , ux, uxt , uxx) (9.29)

is rather cumbersome in this case, its solution is the same as that found in the previous
example (modulo a change of the corresponding invariants), i.e.

∂F

∂λ
+ ϕ

∂F

∂u
+ ϕu

(
ux
∂F

∂ux
+ ut

∂F

∂ut

)
+ (
ϕuuu

2
x + ϕuuxx

) ∂F

∂uxx
+ (ϕuuuxut + ϕuuxt )

∂F

∂uxt

= ϕuuu
2
t + ϕuF (9.30)
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so we will not give the details here. The solution is, whenϕ = ϕ(u),

F(λ, u, ut , ux, uxx, uxt )

= h

(∫
du

ϕ(u)
− λ,

ux

ϕ
,
ut

ϕ
,
ϕuxx − u2

xϕu

ϕ2
,
ϕuxt − uxutϕu

ϕ2

)
ϕ(u)+ u2

t

ϕ
ϕu

(9.31)

whereh is a periodic function inλ, andf is obtained settingλ = 0.
The sine-Gordon equation corresponds to a particular case of this function. Taking

ϕ(u) = 1, so that

F(λ, u, ut , ux, uxx, uxt ) = h (u− λ, ux, ut , uxx, uxt ) (9.32)

and suitably choosing the functionh we get

F(λ, u, uxx) = uxx + sin(u− λ) . (9.33)

ThenF is a periodic function inλ and its value inλ = 0 is

f (u, uxx) = uxx + sinu . (9.34)

9.5. Non-autonomous first-orderODE

As we have seen in the previous examples, the case of autonomous equations and vector
fields depending only on the variableu can be solved completely, giving a general form
for the equations admitting this type of symmetries. Let us now study the case of a non-
autonomous equation

ut = f (t, u) (9.35)

with vector fields of the type

η0 = τ(t, u)∂t + ϕ(t, u)∂u . (9.36)

The determining equation is (3.7) which is no longer a linear equation, though the
nonlinearity is localized in the termF 2. The main problem is, however, the dependency
of the functionsτ and ϕ on t, u. We cannot obtain a general solution in terms of these
functions as we did in the autonomous case. Here, we should specify the explicit expression
of the vector field in order to obtain some interesting results.

Let us consider the following vector field:

η0 = au∂u + bt∂t (9.37)

where a and b are two fixed non-zero constants (the discussion to follow can be easily
adapted to the case where one of them is zero). In this case, the determining equation
becomes linear

∂F

∂λ
+ bt

∂F

∂t
+ au

∂F

∂u
= (a − b)F (9.38)
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and its solution can be computed easily. We can find the two invariants

C1 = te−bλ C2 = tau−b (9.39)

and the solution

F(λ, t, u) = h(te−bλ, tau−b)u1−b/a (9.40)

which should be periodic inλ. We can take, as a particular example,

F(λ, t, u) = g(taub)u1−b/a sin(log(ue−aλ)) (9.41)

and the equation

ut = g(tau−b)u1−b/a sin(logu) (9.42)

whereg is an arbitrary function. We remark that these equations can be written in many
different ways, due to the different choices of the invariants coming from the characteristic
method. The arbitrariness of the functiong comes from its invariance under the continuous
symmetry. The functions sin and log come from the discrete symmetry (λ → λ + 2π/a,
wherea can be taken equal to one).

An example of nonlinear determining equations is given by the two following vector
fields (Lorentz transformations and rotations). Let us first consider the vector field

η0 = t∂u + u∂t (9.43)

and the quasilinear equation

∂F

∂λ
+ u

∂F

∂t
+ t

∂F

∂u
= 1 − F 2 . (9.44)

We can compute two invariants

C1 = λ− log(u+ t) C2 = t2 − u2 (9.45)

and the solution

F(λ, t, u) = u+ h(C1, C2)t

t + h(C1, C2)u
. (9.46)

We should impose periodicity conditions inλ on the functionh, and then takeλ = 0
to get the differential equation.

Finally, using infinitesimal rotations

η0 = t∂u − u∂t (9.47)

the determining equation is

∂F

∂λ
− u

∂F

∂t
+ t

∂F

∂u
= 1 + F 2 . (9.48)
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The two invariants are

C1 = λ− arcsin
u√

t2 + u2
C2 = t2 + u2 (9.49)

and the solution is

F(λ, t, u) = u+ h(C1, C2)t

t − h(C1, C2)u
. (9.50)

If we choose

h(C1, C2) = sin

(
k arcsin

u√
t2 + u2

− kλ

)
(9.51)

wherek is a non-zero constant, we get as a differential equation with a discrete symmetry

u → u cos(2π/k)− t sin(2π/k) u → u sin(2π/k)+ t cos(2π/k) (9.52)

ut =
u+ t sin

(
k arcsin u√

t2 + u2

)
t − u sin

(
k arcsin u√

t2 + u2

) . (9.53)
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